NAG Toolbox for MATLAB

c06ea

1 Purpose

c06ea calculates the discrete Fourier transform of a sequence of n real data values. (No extra workspace required.)

2 Syntax

$$[x, ifail] = c06ea(x, 'n', n)$$

3 Description

Given a sequence of n real data values x_j , for j = 0, 1, ..., n - 1, c06ea calculates their discrete Fourier transform defined by

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \qquad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e., \hat{z}_{n-k} is the complex conjugate of \hat{z}_k), so they are completely determined by n real numbers (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be followed by a call of c06gb to form the complex conjugates of the \hat{z}_k .

c06ea uses the fast Fourier transform (FFT) algorithm (see Brigham 1974). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O 1974 The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

 $\mathbf{x}(j+1)$ must contain x_j , for $j=0,1,\ldots,n-1$.

5.2 Optional Input Parameters

1: **n – int32 scalar**

Default: The dimension of the array x.

n, the number of data values. The largest prime factor of \mathbf{n} must not exceed 19, and the total number of prime factors of \mathbf{n} , counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

[NP3663/21] c06ea.1

c06ea NAG Toolbox Manual

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

The discrete Fourier transform stored in Hermitian form. If the components of the transform \hat{z}_k are written as $a_k + ib_k$, and if \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the (sub)program from which coose is called, then for $0 \le k \le n/2$, a_k is contained in $\mathbf{x}(k)$, and for $1 \le k \le (n-1)/2$, b_k is contained in $\mathbf{x}(n-k)$. (See also Section missing entity coosbackground12 in the Coost Chapter Introduction and Section 9.)

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

At least one of the prime factors of \mathbf{n} is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} \leq 1$.

ifail = 4

An unexpected error has occurred in an internal call. Check all (sub)program calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log n$, but also depends on the factorization of n. c06ea is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, c06ea is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, c06fa (which requires an additional n elements of workspace) is considerably faster.

9 Example

```
x = [0.34907;

0.54890000000000001;

0.74776;

0.94459;

1.1385;
```

c06ea.2 [NP3663/21]

c06ea

```
1.3285;

1.5137];

[xOut, ifail] = c06ea(x)

xOut =

2.4836

-0.2660

-0.2577

-0.2564

0.0581

0.2030

0.5309

ifail =
```

[NP3663/21] c06ea.3 (last)